ON THE CALCULATION OF THE ACTIVATION ENERGY FOR SOLID STATE REACTIONS

EMANUEL P. MANCHE

York College of the City University of New York, Department of Natural Sciences, Jamaica, New York 11451 (U.S.A.)

AND BENJAMIN CARROLL

Rulgers-The State University, Department of Chemistry, Newark, New Jersey 07102 (U.S.A.)

(Received 8 August 1977)

ABSTRACT

A novel and convenient method for the determination of the activation energy from isothermal kinetic runs has been proposed recently. A significant limitation of this method is discussed and is illustrated with an experimental example. A modification of the proposed method is suggested to circumvent this limitation.

It is generally agreed that the most reliable method for determining the activation energy in a thermal decomposition of a solid is that of observing the reaction isothermally at two or more temperatures. A novel method for calculating the activation energy from the isothermal runs has recently been proposed¹. We wish to point out a limitation in this new method of calculation and cite a simple example to illustrate this point.

In an excellent analysis of the thermal decompositions of solids based on the theory of nucleation and nucleus growth, a generalized rate expression for a given temperature has been proposed by Ng, viz.

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = k\alpha^{1-p}(1-\alpha)^{1-q} \tag{1}$$

where α , t, and \overline{k} are, respectively, the fractional decomposition, time and rate constant, while p and q are parameters lying between zero and unity inclusively for a given reaction.

Equation (1) may be rewritten as

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = \bar{k}\mathrm{G}(\alpha;\,p,\,q)$$

so that upon integration

 $H(\alpha; p, q) = \bar{k}t$

· · (3)

- - -

(2)

TABLE 1

a	r (min)			
	$\overline{T} = 120$ °C	$T=150^{\circ}\mathrm{C}$	T = 170 [°] C	
0.1	1.53	0.74	0.55	
0.2	3.50	1.20	0.71	
0_3	5.52	i.61	0.88	
0.4	7.51	2.08	1.07	
0.5	9.51	2.55	1.25	
0.6	11.61	3.08	1.44	
0.7	13.91	3.62	1.63	
0.8	16.31	4.21	1.84	
0.9	18.90	4.87	2.12	

times for the dehydration of C2C₂O₄ - H₂O at various values of α for temperatures of 120^{*}, 150° and 170°C

Consider the case where the integrated equation for $H(\alpha; p, q)$ is unknown. It has been suggested¹ that for any particular fractional decomposition α_n and the corresponding time, t_n

$H(z_{n}; p, q) = kt_{n}$	(4)

so that if t_n is the time for α_n at some other temperature, then

$$H(\alpha_{a}; p, q) = \vec{k}' t'_{a}$$
⁽⁵⁾

OF

$$kt_{a} = k't'_{a} = \text{constant}$$
(6)

Since \bar{k} is inversely proportional to t_n , it has been suggested that a plot of log t_n versus 1/T would thus lead to a slope of $E_n/2.303R$ where E_n and R are the activation energy and gas constant, respectively.

Though eqn. (6) is mathematically correct, the use of the equation in the case of the thermal decomposition of solids may incur a sizeable error due to the time involved in achieving the desired temperatures. The lag-time or warm-up time is a congenital problem of isothermal kinetics of solid state reactions.

Consider the following experimental data in the isothermal dehydration of $CaC_2O_4 \cdot H_2O$ powder as an example using the Perkin-Elmer TGS-1 thermogravimetric instrument. The values for t, and corresponding α for 120, 150 and 170°C, are given in Table 1, the temperatures being achieved as rapidly as possible (ballistically) using five milligram samples in every case. The experiments were carried out under dry nitrogen at a flow rate of 25 ml/min.

Figure 1 shows plots of log t_n versus 1/T for $\alpha_n = 0.2$, 0.4, 0.6 and 0.8. The resulting values for E_n are 11.1, 13.6, 14.5 and 15.1 kcal/mol, respectively. We attribute this to the experimental lag-time which has increasing effect with reaction temperature, thus resulting in a decrease of the slope of the line for each of the plots in Fig. 1.

Fig. 1. Plot of log t_n as a function of the reciprocal absolute temperature for the dehydration of CaC₂O₄ · H₂O carried out isothermally at 120, 150, and 170°C for $a_n = 0.2, 9.4, 0.6$ and 0.8.

Fig. 2. Curves for the isothermal dehydration of $CaC_2O_4 \cdot H_2O$ powder under dry nitrogen at a flow rate of 25 ml/min, carried out at 120, 150 and 170°C. Extrapolation to zero time is to show effect and relative magnitude of the lag-time 170° > 150° > 120°C.

The lag-time effect can be seen more clearly in Fig. 2 where the conversion curves are extrapolated to zero time.

To avoid the error of the lag-time, we suggest using the rates at fixed values of α . Consider eqns. (1) and (2) at any fixed value of α . Then

$$\left(\frac{\mathrm{d}\alpha_{n}}{\mathrm{d}t}\right)_{T_{1}}\frac{\mathrm{i}}{\overline{k}_{T_{1}}} = \left(\frac{\mathrm{d}\alpha_{n}}{\mathrm{d}t}\right)_{T_{2}}\frac{1}{\overline{k}_{T_{2}}} \tag{7}$$

$$\left(\frac{\mathrm{d}\boldsymbol{x}_{\mathbf{n}}}{\mathrm{d}t}\right)_{\boldsymbol{T}_{i}}\frac{1}{\boldsymbol{k}_{\boldsymbol{T}_{i}}} = \mathrm{constant} \tag{8}$$

Thus the same data^{*} at $\alpha = 0.2, 0.4, 0.6$ and 0.8 yield the values $E_a = 16.6, 17.9, 17.2$ and 15.9 kcal/mol, respectively, or an average of 16.9 kcal/mol. This value may be compared with (a) the results of Dollimore et al.² estimated as 16.4 kcal/mol obtained isothermally^{**} and (b) the thermodynamic value³ for $\Delta H^{\circ} = 17.4$ kcal/mol. Clearly, as the lag-time approaches zero or as the lag-time becomes very much less than the half-life of the reaction, eqn. (6) of Ng should be found valid and convenient. Obviously, the time constant of the instrument plays an important role in Ng's method.

REFERENCES

- 1 Wee-Lam Ng, Aust. J. Chem., 28 (1975) 1169.
- 2 D. Dollimore, T. E. Jones and P. Spooner, J. Chem. Soc. A, (1970) 2809.
- 3 F. Rossini, D. D. Wagman, W. H. Evans, S. Levine and I. Jaffe, Circular 500, National Bureau of Standards, U.S. Govt. Printing Office, Wash., D.C., 1952; A. F. Kapustinskii and O. Ya. Samoilov, Izv. Akad. Nauk. SSSR, Otd. Khim. Nauk, (1950) 337.

^{*} We have used the unsmoothed data i.e., $\Delta a/\Delta t$, instead of da/dt since a happens to be almost linear with t.

^{**} Estimated from graphical data of Dollimore et al.².